
1. Introduction
The gradients of physical quantities play important roles in the dynamic evolution of space plasmas. For 
example, the first-order gradient of electromagnetic fields balances their temporal variations as well as their 
sources (charge density and current density); the linear gradient of certain physical quantities (magnetic 
field, thermal pressure, etc.) can also drive the drift motions of charged particles in electromagnetic fields. 
The linear gradient of physical quantities can be estimated from 4-point in-situ measurements with first-or-
der accuracy, and many estimators have already been developed (Chanteur, 1998; De Keyser, 2008; De Key-
ser, et al., 2007; Dunlop et al., 1988; Hamrin et al., 2008; Harvey, 1998; Vogt et al., 2008, 2009).

On the other hand, the quadratic gradients of physical quantities can lead to diffusion and dissipation pro-
cesses in plasmas. The quadratic gradients of electromagnetic potentials can balance the sources as shown 
by the Poisson equation. The geometry of the magnetic field depends on both the first-order and second-or-
der magnetic gradients (Shen et al., 2020).

Recently several investigations have been made to fit the magnetic field to the second-order, based on 
four spacecraft magnetic and current density observations (Liu et  al.,  2019; Torbert et  al.,  2020). Shen 
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et al. (2020) have put forward an explicit algorithm to calculate the quadratic magnetic gradient as well 
as the complete geometry of magnetic field lines with four point magnetic field and particle/current den-
sity measurements under the constraints of electromagnetic laws. This method has been successfully ap-
plied to analyze one flux rope event as observed by MMS (Burch et al., 2016; Pollock et al., 2016; Russell 
et al., 2016; Shen et al., 2020). These approaches, however, cannot be applied to estimate the quadratic 
gradients of other physical fields, such as those of density, temperature, electric potential, etc. Generally, 
at least 10 measurement points of a physical quantity are required to calculate its second-order gradient 
(Chanteur, 1998).

With the development of space exploration, constellation missions with 10 or more spacecraft have 
become possible (e.g., the Cross-Scale mission). However, we still do not have an applicable univer-
sal algorithm for estimating the quadratic gradients of physical quantities with 10 and more point 
measurements.

In this paper, we present a universal algorithm that can estimate both the linear and quadratic gradients 
of physical quantities based on 10 or more point measurements. This algorithm has been tested and its 
reliability verified. The accuracy of this algorithm has also been investigated. The algorithm is presented in 
Section 2, the tests of the method are described in Section 3, and a summary and discussion of the results 
are presented in Section 4.

2. The Algorithm
Consider that a constellation, composed of  10N  spacecraft, performs in-situ observations on a cer-
tain physical field f (density, magnetic field, electric potential, etc.). In the Earth central frame of refer-
ence (or other inertial frames of the investigator), the Cartesian coordinates are ( 1 2 3, ,x x x ) (correspond-
ing to ( , ,x y z), respectively) with their bases as ( 1 2 3ˆ ˆ, ˆ,x x x ). The position of the  th spacecraft is at 

               1 2 3, , 1, 2, ,ix x x x N , and its velocity in the Earth-centered frame of reference is  u . The 

coordinates i
cx  of the barycenter of the constellation satisfy Equation 1:

     
  

   
1 1
Δ 0,

N N
i i i

cx x x (1)

so that

 
 

  .
1

1 N
i i
cx x

N
 (2)

The physical quantity observed is       if x f  in the spacecraft reference frame and     if x f  in 
the Earth center reference frame (a static frame of reference), respectively. There is a certain transfor-
mation relationship between  f  and  f . For the magnetic field,      B B . For the electric field, 

            E E u B . For the vector and scalar potentials,      A A  and              u A . For 
the charge density and current density,         and            j j u .

In the Earth center reference frame, the linear gradient of the physical quantity f is     / i
if x f , and its 

quadratic gradient is       2 / i j
i jf x x f . Based on Taylor expansion, the physical quantity observed, 

 f , can be expressed as Equation (3):

               
1Δ Δ Δ ,
2

i i j
c i c i j cf f x f x x f (3)
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where all the gradients with orders higher than 2 are neglected under the assumption that 

      Δ 1, 2, ,ix N  are much less than the characteristic scale of the structures investigated. Thus, 

there are 10 parameters (      c, ,i i jc c
f f f ) to be determined. Equation 3 can also be written as

            
1Δ Δ Δ ,
2

i i j
c i ijf f x g x x G (3’)

where the linear and quadratic gradients of the physical quantities at the barycenter are   i i c
g f  and 

   ij i j c
G f , respectively. It is noted that ij jiG G . Therefore, to obtain the 10 parameters ( cf , ig , ijG ), 
observations by the constellation with at least 10 spacecraft are required.

In order to obtain the estimator for the 10 parameters ( cf , ig , ijG ) with the desired accuracy from the  10N  
spacecraft in-situ observations, we make use of the least squares method (Harvey, 1998; Shen et al., 2003). 
Assume the action to be

         


 
    

 


2
1 1Δ Δ Δ .

2
i i j

c i ijS f x g x x G f
N

 (4)

Minimize this using

  0.S (5)

so as to find the formulas for cf ,   i i c
g f  and    ij i j c

G f .

Equation 5 leads to

  
  

  
0, 0, 0.

c i ij

S S S
f g G (6)

Because
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1

1
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f f

N
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N
x x

N

c

N
i

i

N
i j








 


 


 


     




  

1 1 1

2
1 1

   GGij  0,

 (7)

we get

       
  

  
1 1

1 1 Δ Δ ,
2

N N
i j

c ijf f x x G
N N

 (8)

where Equation 1 is used. Equation 8 can also be written as

 
 

 
1

1 1 .
2

N
ij

c ijf f R G
N

 (8’)

Here, ijR  is the volumetric tensor (or 3 3 matrix) (Harvey, 1998; Shen et al., 2003), which is defined as

          
  

     
  

1 1

1 1Δ Δ .
N N

ij i j i i j j
c cR x x x x x x

N N
 (9)

Therefore, the physical quantity at the barycenter is the average of all the measurements plus the correction 
term by the quadratic gradient.
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From   / 0iS g , we get


 

    
S

g N
f f x g x x G x

i

N

c
k

k
k m

km   











        

1
2

1

21

    


       

i

N
i ik

k
ikm

km
N

f x R g R G2
1

2 0

1
  ,

 (10)

where the third-order tensor is defined as

       
 

 
1

1 Δ Δ Δ .
N

ikm i k mR x x x
N

 (11)

ikmR  is symmetrical, i.e.,  ikm kim imkR R R . Equation 10 reduces to

     


  
1 1 .

2

N
ik i i ikm

k c kmR g x x f R G
N

 (12)

Let 1R‐  be the inverse of the volumetric tensor, which satisfies      1 1kj jk j
iik ki

R R R R‐ ‐ . Hence, the lin-
ear gradient at the barycenter is obtained from Equation 12 as follows:

       


      
 1 11 1 .

2

N
j j jkm

i c kmij ij
g R x x f R R G

N
 (13)

The second term on the right-hand side of the above Equation 13 is the correction arising from the quadratic 
gradient.

From   S / G 0ij , we get

                


 
       


1

1 1Δ Δ Δ Δ Δ 0.
2

N
k k m i j

c k km
ij

S f f x g x x G x x
G N

 (14)

Thus

       


   
1

1 1Δ Δ 0,
2

N
ij i j ijk ijkm

c k kmf R f x x R g R G
N

 (15)

where the fourth-order tensor is

         


 
1

1 Δ Δ Δ Δ .
N

ijkm i j k mR x x x x
N

 (16)

Note that ijkmR  is symmetric, with   ijkm jikm ijmk kmijR R R R . Obviously, cf ,   i i c
g f  and    ij i j c

G f  
can be obtained by solving Equations 8′, 12, and 15.

In order to ensure accurate calculations, we performed iterations to solve these equations, which can be 

conveniently realized by computation. First, a linear approximation is made with   0 0ij ijG G . Then, from 
Equations 8′ and 13, we obtain the physical quantity and its linear gradient at the barycenter as

 
 


 

0 1 ,cf f
N (17)

and

         
 

   
0 1

1

1 ,
N

k k
i i cc ik

g f R x x f
N

‐ (18)
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respectively. Second, by substituting the above two equations into Equation 15, we can get

 
     

   
  


  

1 00

1

1 1 Δ Δ ,
2

N
ijkm i j ij ijk

ckm kR G f x x R f R g
N

 (19)

with which the quadratic gradient  1
kmG  at the first-order can be obtained. Substituting the first-order quad-

ratic gradient  1
kmG  into Equations 8′ and 13 to yield the physical quantity  1

cf  at the second-order and its 

linear gradient  1
ig  at the second-order, and, again, using Equation 15, we get the corrected quadratic gradi-

ent  2
kmG  at the first-order from

 
     

   
  


  

2 11

1

1 1 Δ Δ .
2

N
ijkm i j ij ijk

ckm kR G f x x R f R g
N

 (19’)

Repeat the above processes to yield the solutions of Equations 8′, 12, and 15, i.e., the estimations of the 10 
parameters ( cf ,   gi i c

f ,    ij i j c
G f ) of the plasma structure investigated.

Equation 15 is a tensor equation, whose concrete solution needs to be found. Rewriting it gives as follows:

 
 

3 3

1 1
, , 1, 2, 3 .ijkl ij

kl
l k

R G c i j (20)

The tensor on the right-hand side of Equation 20 is defined as

       
 

  
1

2 Δ Δ 2 2 .
N

ij i j ij ijk
c kc f x x R f R g

N
 (21)

We will transform the tensor Equation  20 into a matrix equation so as to obtain its solution concisely. 
The second-order tensor ijc  is symmetric, that is, ij jic c . ijc  contains six independent components, which 

can be expressed as     11 12 13 22 23 33, , , , ,ijc c c c c c c . Similarly, the symmetric underdetermined tensor ijG  

also contains six independent components, which can be written as     11 12 13 22 23 33, , , , ,ijG G G G G G G . The 

fourth-order tensor ijklR  is symmetric, and    ij klijklR R , where both ij and kl have six independent compo-
sitions. Therefore, the tensor Equation 20 can be rewritten as

   
 

     
3 3

1
2 , 1,2,3, , ,3 .ijkl ij

kl kl
l kk

R G c i j i (22)

To facilitate the calculation, the coefficient on the left-hand side of Equation 22 should be index symmetric. 
Multiplying the two sides of Equation 22 by  2 ij  to yield

        
 

       
3 3

1
2 2 2 , 1,2,3, , ,3 .ijkl ij

ij kl kl ij
l kk

R G c i j i (23)

Note that in the above equation the sums over the indices i and j are not made even if i and j are repeated. 
Equation 23 can be regarded as a matrix equation in a six-dimensional space. The bases of this six-dimen-
sional space are ( 1 1 1 2 1 3 2 2 2 3 3 3, , ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,ˆ ˆ, ˆx x x x x x x x x x x x ), which can also be marked as  1 2 6

ˆ ˆ, , ˆ,k k k , or ˆ
Mk , M = 1, 

2, …, 6, satisfying  ˆ ˆ
M N MNk k . The underdetermined tensor ijG , which is composed of six independent 

components, can be treated as a vector in the six-dimensional space and written as   1 2 6, , ,X X XG  with 
its components

  .M
klX G (24)

G can be expressed in vector format as
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6

1
.ˆM

M
M

XG k (24’)

The term  2 ij
ij c  on the right-hand side of Equation 23 is composed of six components, and can also be 

regarded as a vector in the six-dimensional space and expressed as   1 2 6, , ,C C CC , with the components

    2 .ijM
ijC c (25)

Thus, the vector C in the six-dimensional space is written as


 

6

1
.ˆM

M
M

CC k (26)

At the same time, the coefficient tensor     2 2 ijkl
ij kl R  can be treated as a 6 6 matrix:

         2 2 .ij klMN
ij kl R (27)

The index M corresponds to  ij , and N to  kl . The matrix MN is symmetric and   MN NM, which can 
be expressed in vector format as

   .ˆ ˆMN
M Nk k (28)

Like the 3 3 volumetric matrix ijR , the 6 6 matrix MN respects the characteristic geometric features of 
the constellation.

Therefore, the tensor Equation 20 has been transformed into a matrix equation as follows:

   .MN N MX C (29)

whose vector form is

   .G C (29’)

The symmetric matrix MN can be diagonalized. Suppose that its eigenvectors are    1 2 6, ,ˆ ˆ ˆ,e e e , with 
 ˆ ˆM N MNe e , and its eigenvalues are    1 2 6Λ ,Λ , ,Λ , with       1 2 6Λ Λ Λ 0. The relationship be-

tween the eigenvectors  1 2 6ˆ ˆ, , ˆ,e e e  and the bases  1 2 6
ˆ ˆ, , ˆ,k k k  is

 .ˆˆ M MN Ne k (30)

Then  can be written as


  

6

1
Λ .ˆ ˆM M M

M
e e (31)

In the eigenspace  1 2 6ˆ ˆ, , ˆ,e e e  of MN, G and C can be expressed as


  

6

1
,ˆM

M
M

XG e (24”)

and


  6

1
.ˆM

M
M

CC e (26’)

Substituting Equations 31, 24″, and 26′ into 29′, we get

 Λ .ˆ ˆM M
M M MX Ce e (32)
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Then

 Λ .M M
M X C (33)

Thus,

  1 .
Λ

M M

M
X C (34)

In Equation 34, it is required that Λ 0L . If the eigenvalue Λ 0L ,  LX  cannot be determined. Therefore,


  

     
6 6 6

1 1 , 1

1 1 .ˆ
Λ

ˆ
Λ

ˆM M M
M M MN N

M M M NM M
X C CG e e k (35)

Comparing Equation 24′ and 35 leads to




  6

1

1 .
Λ

N M
MN

M M
X C (36)

Combining Equations 26, 30, and 26′, we get

  6
,M L

ML
L

C C (37)

Finally, Equation 36 becomes

  
6

,

1 ,
Λ

N L
MN ML

M L M
X C (38)

which is the solution for the six independent components of the quadratic gradient at the barycenter of the 
constellation in the Earth central reference frame.

In order to obtain a more accurate quadratic gradient, an iterative method is used. The physical quantity 
cf  and its linear gradient   i i c

g f  at the barycenter are corrected by substituting the quadratic gradient 

ijG  obtained from Equation 38 into 8′ and 13. The corrected tensor ijc  is calculated from Equation 21. The 

components of the six-dimensional vector C ,     2 ijM
ijC c  are calculated. Then, the components of the 

quadratic gradient at the barycenter,  N
klX G  are obtained from Equation 38, which have been corrected 

by the first iteration. The above cycle is repeated until satisfactory accuracy is achieved. This iterative meth-
od will be tested and its reliability verified in the next section. We call this method as algorithm for the linear 
and quadratic gradients (ALQG), which can draw both the linear and quadratic gradients of any physical 
quantity from 10 or more point measurements.

The estimation of the quadratic gradient of a physical quantity relies on the configuration of the constel-
lation. We can obtain the complete quadratic gradient if all the six eigenvalues of the characteristic matrix 
MN are nonzero. However, as shown in Equation 38, the quadratic gradient cannot be completely deter-
mined if one or more eigenvalues of the characteristic matrix MN are zero. For example, if the constellation 
is linearly distributed, it can be seen from Equations 16 and 27 that only the eigenvalue of the character-
istic matrix MN along the spacecraft array is larger than zero, while all the other five eigenvalues of the 
characteristic matrix MN are zero. Therefore, only the quadratic gradient along the spacecraft array can be 
obtained in this situation. For the situation where the constellation is planar, the three eigenvalues of the 
characteristic matrix MN along the directions in the spacecraft plane are greater than zero, while remaining 
three eigenvalues are zero. Thus, only the three components of the quadratic gradient in the plane of the 
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constellation can be found. Further investigations should be made to fully understand how the configura-
tions of the constellations affect the determination of the quadratic gradient.

ALQG can find plenty of applications in analyzing the clustered observations at 10 or more points. For 
example, we can obtain the linear and quadratic gradients of the electric potential with this approach 
based on the potential measurements by  10N  sensors on board one spacecraft (if they are real), and 
further obtain the electric field and charge density at the barycenter of the sensors. Suppose the electric 
potential relative to the spacecraft observed at position r  of the sensor   is        , 1,2, , Nr . 

By using the above algorithm, we can obtain the electric potential c and its linear and quadratic gradi-

ents,  
c
 and  2

c
, at the barycenter of the constellation. Therefore, the electric field at the bary-

center is

    .
c

E (39)

Applying Gauss's law, we get the charge density at the barycenter as follows:

           2
0 0 .

c c
E (40)

As for the multiple spacecraft magnetic field measurements, using the new algorithm (ALQG) we 
can obtain the magnetic linear and quadratic gradients at the barycenter of the constellation, and fur-
ther obtain the complete geometry of the MFLs, including the Frenet frame, the curvature and tor-
sion of the magnetic field lines (MFLs). Suppose that the magnetic field at position r  of spacecraft 
  is      , 1, 2, , NB B r . Utilizing the above algorithm, the magnetic field and its linear gradient 

      cc
B B r  and quadratic gradient       cc

B B r  at the barycenter of the constellation can be 
calculated. The tangential vector or the unit magnetic vector of the MFLs is ˆ / Bb B . The curvature 
of the MFLs at the barycenter of the constellation can be estimated from the following equation (Shen 
et al., 2003):

        1 1 .cj c ci i j c ci cj cm i m cc
B b B B b b b B (41)

The principal normal vector of the MFLs is ˆ /K κ κ , and the binormal vector of the MFLs is  ˆ ˆ ˆN b K. 

From its definition,     2 2ˆ1 ˆ/ /d dsb N, we can get the torsion of the MFLs at the barycenter of the 
constellation as the expression (Shen et al., 2020)

               1 3 1 3 .c c c cj ci i k k j c c cj ck ci k i jc c c
B N B B B B N B B B (42)

In this study, we have not taken advantage of the actual time series observations by the spacecraft. As ex-
plored in the work of De Keyser (2008), who made use of the time series synthetic data, fewer spacecraft are 
needed for determining the quadratic gradient of scalar or vector fields. The four-dimensional approach is 
a thorough one but is also rather complicated. Following the approach of De Keyser (2008) and combining 
this with the method used in this paper, a better estimator could be found for constellations with fewer than 
10 spacecraft.

3. Tests
In this section, we will investigate the applicability of ALQG to the vector field, and check its ability to yield 
the linear and quadratic magnetic gradients and the complete geometry of the MFLs based on the multi-
ple-point magnetic measurements.

ALQG has been tested for the cylindrical force-free flux rope, dipole magnetic field and modeled geomag-
netospheric field, so as to evaluate its capabilities. Fifteen-point measurements have been assumed. The 
tests are focused on how well the algorithm behaves as iterations are performed and how the truncation 
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errors vary with an increasing relative measurement scale. Assuming L is the size of the constellation 
and D is the local characteristic scale of the magnetic structure, the relative measurement scale is L/D. 
The influence of the number of spacecraft in the constellation on the truncation errors has also been 
analyzed.

3.1. Configuration of the Constellation

The positions of the 15 spacecraft of the constellation in the barycenter coordinates are generated randomly, 
which is shown in Figure 1. Table S1 in the Supporting Information shows the positions of the 15 spacecraft 
in the Cartesian coordinates in the barycenter frame. The three characteristic lengths of the constellation, 

, ,a b c, can be defined by the square roots of the eigenvalues of the volumetric tensor ijR  (Harvey, 1998). For 
the 15-spacecraft constellation, they are   0.75 , 0.61 , 0.24E E Ea R b R c R , and hence the size of the con-
stellation is  2 1.5 EL a R .

Based on the definition given in Equation 27, the 6 6 characteristic matrix MN can be calculated as

 

  


 
  


 

   


9.153 1.887 0.520 3.523 3.260 7.683
1.887 14.091 6.52 2.888 3.32 1.897

0.520 6.52 30.73 1.66 3.794 0.5000
3.523 2.888 1.66 11.541 3.070 3.683

3.26 3.32 3.794 3.070 14.733 3.23
7.683 1.897 0.5000 3.683 3.23 12.016

MN 






 
 
 
 
 



3 410 .ER (43)

which is symmetric. Its six eigenvalues are given in Table 1, all of which are nonzero. Thus, the algorithm 
can be applied to calculate the linear and quadratic gradients with the measurements from this constella-
tion. In the following tests, the configuration of the constellation will be kept unchanged, while its size will 
be adjusted by scaling up and down the distances between the spacecraft.

3.2. Flux Ropes

The axially symmetric force-free flux rope will be used to test the algo-
rithm developed in Section 2. The magnetic field's cylindrical coordinates 
can be expressed as (Lundquist, 1950)

       0 1 00, , ,B J r J rB (44)
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Figure 1. Schematic view of the distribution of the constellation.

1Λ 2Λ 3Λ 4Λ 5Λ 6Λ

0.03512 0.02385 0.002728 0.008468 0.01130 0.01080

Table 1 
Eigenvalues (in 4

ER ) of the Characteristic Matrix MN
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where r is the axial-centric distance, 1 /  is the characteristic scale 
of the flux rope, nJ  is the first kind of Bessel function of order n, and 

0B  is the characteristic magnetic strength in the flux rope. We can set 
  1 / ER  and 0 60 nTB . The overall spatial characteristic scale of the 
flux rope is  1 / 1 ED R . However, when  1 / 1 Er R , it is proper 
to set the local characteristic scale as the axial-centric distance r, that is, 

D r. The helix angle   of the MFLs in the cylindrical flux rope obeys 
      0 1tan /J r J r . The curvature and torsion of the MFLs are ex-

pressed as

  1 2cosr (45)

and

   tan , (46)

respectively (Shen et al., 2020).

The linear and quadratic gradients of the magnetic field, i kB  and 
 i j kB , are usually composed of  3 3 9 and  6 3 18 independent 
components, respectively. The axially symmetric flux rope has two sym-
metries: the three components of the magnetic field in the cylindrical 
coordinates are invariants along both the axial and azimuthal directions. 
Thus, some components of the quadratic magnetic gradient are zero. It 
is easy to find that, the 13 independent components of  i j kB  in Car-
tesian coordinates at one point of the x-axis are zero, i.e.,    0z i jB , 
and             0x x x y y x x y y x y zB B B B ; while the remaining five 
independent components,  x y xB ,  x x yB ,  y y yB ,  x x zB , and  y y zB  
are nonzero. Similarly, for the linear magnetic gradient, i jB , its three 
components,  y xB ,  x yB , and  x zB , are nonvanishing, and all the other six 
components are zero analytically. Without loss of generality, putting the 
barycenter of the constellation composed of 15 spacecraft on the x-axis, 
we can focus on checking the algorithm on the calculations of the five 

nonzero independent components of the quadratic magnetic gradient and the three nonvanishing compo-
nents of the linear magnetic gradient.

We first investigate the behavior of the resultant during the iterations. Assume that the barycenter of the 
constellation is at   1,0,0 ER , and reduce the separations between the spacecraft of the constellation propor-
tionally so that the relative measurement scale L/D  0.026. We have performed the iterative calculation 
and tracked the errors of the linear and quadratic gradients of the magnetic field, which are plotted in 
Figure 2. The relative error (vertical axis), algorithm real/ 1X X , before the first iteration is 1 for the quadratic 
components of the gradients since we assume that these quantities vanished at the beginning (not shown 
in Figure 2). After the first iteration (horizontal axis), some of the relative errors have dropped under 0.3 
while others remain high. After further iterations, the errors decrease and finally converge to certain fixed 
values, as given by the exact solutions of the original equations. The number of iterations for the solutions 
to converge is varying and mostly <100. This has confirmed the convergence of the iterative method. It is 
noted that, in the simulations with Python (numpy) on a desktop with the Intel Core i5-6500 Quad-Core, 
3,000 iterations took <1 s, which indicates the speed of this algorithm.

We then investigated the dependence of the truncation errors of the nonzero components of the linear and 
quadratic magnetic gradients on the relative measurement scale /L D.

We tested three situations where the barycenter of the 15-spacecraft constellation was located at three repre-
sentative points, [1,0,0] ER , [0.5,0,0] ER , and [0.1,0,0] ER  in Cartesian coordinates. We scaled up and down 
the size of the original 15-spacecraft constellation to adjust its characteristic size L. The algorithm was 
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Figure 2. Relative errors of the nonvanishing components of the (a) 
Linear and (b) Quadratic magnetic gradients in the flux rope calculated 
by different numbers of iterations. It is noted that   , /i k i kB B x , 

   2
, , /i j k i j kB B x x .
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found to yield reliable results for most relative measurement scales /L D, where D is characteristic scale of 
the magnetic structure.

The calculations of the linear magnetic gradient and also the curvature of the MFLs were evaluated, which 
are shown in Figures 3a, 3c, and 3e. The calculated linear magnetic gradient and curvature of the MFLs 
have sound accuracies and their relative errors are all <5%. As shown in Figures 3a, 3c, and 3e, the relative 
errors of the three nonvanishing components of the linear magnetic gradient and the curvature of the MFLs 
vary on the second-order of L/D, which was proven by polynomial fitting. In the following, the variation in 
the relative errors with L/D has been verified in the same way.

As shown in Figures 3b, 3d, and 3f, the relative errors (vertical axis) of the quadratic gradients (solid lines) 
increase approximately linearly with /L D (horizontal axis) and are generally <5%, as do those of the 
resultant torsion of the magnetic field lines (dashed and dotted lines) with slightly larger errors. Note that 
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Figure 3. Left panels (a), (c), and (e) show the relative errors of three nonvanishing components of the linear magnetic 
gradient and curvature ( ) of the magnetic field lines (MFLs) in the flux rope by /L D calculated for three different 
locations of the constellation, [1,0,0] ER , [0.5,0,0] ER , and [0.1,0,0] ER  in Cartesian coordinates, respectively. Right 
panels (b), (d), and (f) show the relative errors of the nonvanishing components of the quadratic magnetic gradient and 
torsion ( ) of the MFLs in flux rope by /L D calculated for the three different locations of the constellation, [1,0,0] ER , 
[0.5,0,0] ER , and [0.1,0,0] ER  in Cartesian coordinates, respectively. MFLs, magnetic field lines.
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all of the errors shown in Figure 3 converge. Such small errors imply that 
the algorithm runs well for the flux rope 15-point measurements.

Because the magnetic field in the flux rope generally varies rather 
smoothly in space, the application of the algorithm to it is very effective 
and satisfactory accuracies can be achieved as mentioned above. How-
ever, the magnetic field in space can have severe spatial variations, for 
example, the dipolar magnetic field. The strength of the dipolar magnetic 
field decreases as the third power of the distance from the dipole, and 
the magnetic gradients at every order are comparable. The actual calcu-
lations of the linear magnetic gradient and current density of the near-
Earth magnetic field based on multiple spacecraft measurements are oc-
casionally inaccurate (Yang et al., 2016). Here, we would like to apply the 
new algorithm to estimate the linear and quadratic magnetic gradients 
and check its accuracy and capabilities.

3.3. Dipole Magnetic Field

In this section, we will analyze the ability of the algorithm to calculate 
the dipole magnetic field. The dipole field in Cartesian coordinates is de-
fined as

   
2 2

5 3 ,3 ,3 ,zM
xz yz z r

r
B (47)

where zM  is the magnetic dipole moment and   2 2 2r x y z . It is 
supposed that the magnetic dipole moment points in the positive z-direc-
tion. The magnetic dipole moment is set as    330438 nTz EM R , which 
is approximately that of the Earth. It is easy to obtain the analytical ex-
pression for the curvature of the MFLs as

 
 

 









2

3/22

1 cos sin3 ,
1 3cosr (48)

where   is the polar angle. The MFLs in the dipole magnetic field are plane curves, whose torsion is zero, 
that is,   0.

The local characteristic scale D of the magnetic field measured can be chosen to be the distance of the con-
stellation from the dipole, that is, D r.

The configuration of the constellation is the same as that in Section  3.1, which is shown in Figure  1. 
We scale up and down the original 15-spacecraft constellation to alter the characteristic size L of the 
constellation.

We investigated the convergence behavior of the components of the linear and quadratic magnetic gradi-
ents calculated by the iterative algorithm. The constellation is put at the equatorial plane of the dipole with 
coordinates of [3,0,0] ER , where only five independent components of the magnetic quadratic gradient are 
nonzero. The separations between the spacecraft of the constellation are reduced proportionally so that the 
relative measurement scale / 0.026L D . The convergence behaviors of the nonvanishing independent 
components of the linear and quadratic magnetic gradients estimated by the algorithm are shown in Fig-
ures 4a and 4b, respectively, which shows that the linear and quadratic magnetic gradients attain conver-
gence within ∼50 iterations.

The algorithm was then utilized to calculate the magnetic linear and quadratic gradients as well as the cur-
vature of the MFLs in the dipole field as expressed by Equation 47, for various characteristic scales of the 
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Figure 4. Relative errors of the nonvanishing components of the (a) linear 
and (b) quadratic magnetic gradient in the dipole field at the equatorial 
plane as calculated by different numbers of iterations.
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constellation. The constellation is located at           3,0,0 , 2,0,3 , and 0,0,3E E ER R R , which correspond to low, 
middle, and high latitudes, respectively. As shown in Figures 5a, 5c, and 5e, the relative errors of the nonva-
nishing components of the linear magnetic gradient and the curvature of the MFLs are of the second-order 
of L/D. As / 0.01L D , the relative errors of the linear magnetic gradient are <0.2%. The variations in the 
relative errors of the magnetic quadratic gradient calculated with the algorithm by /L D are shown in 
Figures 5b, 5d, and 5f. It can be seen that the relative errors of the magnetic quadratic gradients are of the 
first-order in L/D. However, the errors in estimating the magnetic gradients are greater than those in the 
case of the flux ropes. This is because the dipolar magnetic strength decreases rather rapidly with distance 
from the dipole. It is also shown in Figures 5b, 5d, and 5f that, as / 0.01L D , the relative errors of the 
quadratic magnetic gradient are <5%.
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Figure 5. Left panels (a), (c), and (e) show the relative errors of the three nonvanishing components of the linear 
magnetic gradient and curvature ( ) of the MFLs in the dipole field by /L D calculated for three different locations of 
the constellation, [3, 0, 0] ER , [2, 0, 3] ER , and [0, 0, 3] ER  in Cartesian coordinates, respectively. The solid black lines in 
panels (a), (c), and (e) are proportional to  2

/L D , that serve as references to the second-order trends. Right panels (b), 
(d), and (f) show the relative errors of the nonvanishing components of the quadratic magnetic gradient in the dipole 
field by /L D calculated for the three different locations of the constellation, [3, 0, 0] ER , [2, 0, 3] ER , and [0, 0, 3] ER  in 
Cartesian coordinates, respectively. MFLs, magnetic field lines.
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3.4. Modeled Geomagnetosphere

The geomagnetic field can be assumed to include one more dipole, the 
mirrored dipole, in the Earth's dipole field, that is,

           
2 2 2 21 2

1 25 5
1 2

3 ,3 ,3 3 40 ,3 ,3 .z z
E

M M
xz yz z r x R z yz z r

r r
B (49)

The modeled geomagnetospheric field is strongly inhomogeneous and 
continuously asymmetric; therefore, it serves to test algorithm more 
strictly and realistically. In Equation 49, 1zM  is the Earth's dipole moment, 

and   2 2 2
1r x y z  is the distance of the measurement point from 

the Earth's dipole. The mirror magnetic dipole, 2 128z zM M , is located at 

 40 Ex R , and     
2 2 2

2 40 Er x R y z  is the distance from the mir-
ror dipole. The plot of the magnetic field in the modeled magnetosphere 
is shown in Figure 6. In general, the modeled magnetospheric field is ap-
proximately equal to the Earth's dipole field in the inner region, 1 6 Er R . 
Since the dipole field has been tested in Section 3.3, we now focus on the 
outer region, 1 6 Er R . Three points, [5, 15, 5] ER , [5, 10, 10] ER , and [–5, 
15, 10] ER , corresponding to the far flank and high latitude at dayside 
and high latitude far flank at nightside, respectively, are chosen as the 
locations of the barycenter. Here, we define the relative errors of the com-
ponents  j iB  and  k j iB  as

     


 
algorithm real ,

j i j i
ij

B B
e

B
 (50)

and

       


 
algorithm real ,

k j i k j i
ijk

B B
e

B
 (51)

respectively, where    3
, / 9j ii jB B  and     3

, , / 27k ji j k i
B B  are the average values of the compo-

nents of the linear and quadratic magnetic gradients, respectively.

Figure 7 shows the convergent trend of the linear and quadratic gradients within 50 iterations when the 
separation between the spacecraft in the constellation is adjusted to make / 0.026L D . By iteration we 
can obtain the true solutions of the set of equations (estimators) of the algorithm. However, because the 
algorithm has omitted the terms higher than second-order the exact solutions of the set of equations con-
tain truncation errors (which are evident in Figure 7). Again the algorithm is confirmed to be reliable and 
suitable for analyzing fields varying severely in space.

Figure 8 shows the relative errors of all components of the linear and quadratic gradient calculated at dif-
ferent spacecraft scales and locations. Due to the inhomogeneity and asymmetry of the geomagnetospheric 
field, all components are nonvanishing. It is found that the linear gradients increase quadratically with 

/L D and the quadratic gradients linearly with /L D. As / 0.01L D , the relative errors of the quadratic 
gradients are below 10% , and those of the linear gradients are below  2%. The accuracy of the algorithm 
for the modeled magnetospheric field is close to that for the dipole field.

The global geometry of the magnetospheric magnetic field can also serve as an elaborate scenario for 
testing. The geometrical features of the MFLs can commonly be depicted by the curvature   and torsion 
 . On the other hand, they can also be represented by another set of parameters, the radius of curvature 
and the spiral angle, ( cR ,  ). We have compared the analytical distributions of the radius of curvature 
and spiral angle of MFLs in the  0x  plane and those calculated based on the algorithm, and the re-
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Figure 6. Magnetic field lines (MFLs) at the GSE x-z coordinate plane 
in the modeled magnetosphere with the magnetic field as defined in 
Equation 49.
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sults are shown in Figure 9. Note that we have only modeled the region 
with (  0, 0y z ), one-quarter of the magnetosphere, on considering 
the north-south and dawn-dusk symmetries of the modeled magneto-
sphere. Analytically, the modeled geomagnetic field has mirror sym-
metry about the z  =  0 coordinate plane (or the equatorial plane), so 
that the torsion of the MFLs is negated through the mirror and is zero 
at the equatorial plane with z = 0, as indicated in panel (c) of Figure 9. 
The separation between the spacecraft is fixed at  28 kmL . With the 
ever-changing D when we move the constellation around, the largest 
relative scale is / 0.0545L D  at bottom-left corner (near the Earth), 
while the least scale / 0.00400L D  at top-right corner. The radius of 
curvature given by the algorithm is almost identical to its real value, 
as shown in the top panels of Figure 9. The MFLs tend to be straighter 
at the polar regions and more bending at the low-latitude regions. The 
distribution of the spiral angles of the MFLs, as obtained by the algo-
rithm, is shown in panel (d) of Figure 9, which is consistent with that 
calculated analytically, as shown in panel (c). Both of them show the 
strong twist of the MFLs in the duskside cusp region. It is noted that 
at the low-attitude polar region, the algorithm yields negative spiral 
angles of the MFLs, as shown in the deep-blue area in panel (d). This 
abnormal deviation from the accurate calculation results mainly from 
the extremely small curvature of the MFLs in this region. Figures S1–S3 
in the Supporting Information present plots of the distributions of the 
radius of curvature and helix angle of MFLs in three other coordinate 
planes in modeled magnetosphere based on theoretical and new algo-
rithm calculations and thus to further illustrate the ability of the new 
algorithm.

In this test, 15 measurement points were applied and we have verified the 
feasibility and accuracy of ALQG. The algorithm needs at least 10 meas-
urement points as input to estimate the quadratic gradient reliably. The 
more points the algorithm builds on, the more accurate the estimated 
quadratic gradients are.

To investigate this relationship, we need to exclude the effect of the spatial distribution of the constellation. 
For the n points used for modeling, we generated 1,000 constellations spontaneously, each consisting of n 
spacecraft, and then chose one constellation with a minimum error of the calculation as the representative 
case. Figure 9 shows the mean relative errors of the linear and quadratic magnetic gradients at   1,1,2 ER  in 
the modeled magnetospheric field derived from virtual measurements of constellations with different num-
bers of spacecraft n and two fixed characteristic spatial scales /L D. As indicated by the dashed magenta 
lines, the mean error of the quadratic gradient is nearly proportional to 1 / n. The mean error of the linear 
gradient, however, appears to be a constant plus a weak variation of the number of spacecraft in the constel-
lation. The averaged mean error of the linear magnetic gradient is about  12.07 10 % for / 0.05L D  and 

 38.28 10 % for / 0.01L D . As indicated by Figure 10, the results obtained here also confirm the previous 
arguments that the errors of the linear gradient components decrease quadratically with /L D and those of 
the quadratic gradient components linearly with /L D (see Figure 10).

The convergence of the iteration was not verified mathematically in this study. However, it was found 
that the iterations led to convergence in all of the more than 10,000 simulations we carried out for 
the three vector field models with constellations of random configurations and different numbers of 
spacecraft.

In the actual measurement data, there are usually noises and turbulences, that will possibly lead to ad-
ditional errors besides the truncation errors in the calculations. In the simulations, it is found that the 
noises do not affect the convergence of the iterations. Nevertheless, a white noise would affect the accuracy 
of the algorithm at much lower /L D when the difference between the measured values from different 
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Figure 7. Relative errors of the components of the (a) linear and (b) 
quadratic magnetic gradients in the modeled geomagnetic field at the 
position [−5, 15, 10] ER  as calculated by different numbers of iterations. 
The scale of the constellation is set as / 0.026L D . In panel (b), the 
colored dashed, dotted, and solid lines are for derivatives of 1B , 2B , and 3B , 
respectively.
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spacecrafts is close to the measurement errors. Disturbances take similar effects but can be reduced easily 
by wave filters in actual applications (Shen et al., 2020). Presently, we still have no actual observation data 
while the main goal of this work is to derive the algorithm. So that this problem can be investigated in 
detail late.

In this section, we have focused on confirming the feasibility of the general algorithm. Therefore, in all the 
above three tests on magnetic fields, we have not taken advantage of the physical constraints, for example, 
the divergence-free condition of the magnetic field, that is,    0B . With this constraint, the number of 
spacecraft in the constellation can still be reduced.
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Figure 8. Left panels (a), (c), and (e) show the relative errors of the components of the linear magnetic gradient and 
curvature ( ) of the MFLs in the geomagnetic field by /L D calculated at three different locations of the constellation, 
[−5, 15, 10] ER , [5, 10, 10] ER , and [5, 15, 5] ER  in Cartesian coordinates, respectively. The black dash-dotted line is for 

the curvature. The solid black lines in panels (a), (c), and (e) are proportional to  2
/L D , that serve as references to the 

second-order trends. Right panels (b), (d), and (f) show the relative errors of the components of the quadratic magnetic 
gradient and torsion ( ) of the MFLs in magnetospheric field by /L D calculated for the three different locations of the 
constellation, [−5, 15, 10] ER , [5, 10, 10] ER , and [5, 15, 5] ER  in Cartesian coordinates, respectively. The black dotted 
line is for the torsion. MFLs, magnetic field lines.
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4. Summary and Conclusion
The algorithms for calculating the linear gradients of physical quantities based on the measurements by 
constellations composed of four or more spacecraft have been well established and have found wide appli-
cations in Cluster, THEMIS, and MMS data analyses. With the evolution of space explorations, 10 or more 
spacecraft constellations will be quite feasible in the near future. Therefore, it is meaningful to develop the 
method to draw the high order gradients of the physical quantities based on ≥10 point measurements so as 
to adequately prepare for future multiple-point data analysis.
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Figure 9. Distributions of the radius of curvature (top) and helix angle (bottom) of MFLs in the coordinate plane x = 0 
in modeled magnetosphere based on theoretical (left) and new algorithm (right) calculations. The dashed line indicates 
the magnetopause when  27 nT, 3 nPaz pB D  (Shue et al., 1998). The white color in panels (a) and (b) represent 
radius of curvature of MFLs greater than 32 ER . MFLs, magnetic field lines.

Figure 10. Mean truncation errors of linear (red) and quadratic (blue) gradients for different numbers of measurement 
points. The modeling is for / 0.05L D  (left) and / 0.01L D  (right) at   1,1,2 ER  in the modeled magnetosphere. The 
dashed magenta line is a fitted curve.
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In this investigation, we have established an algorithm (ALQG) to deduce both the linear and quadratic gradi-
ents of an arbitrary physical quantity using the least squares method. This approach can yield the linear and 
quadratic gradients at the barycenter of a constellation with an input of ≥10 measurement points. Using the least 
squares method, the equations for determining the physical quantity and its linear and quadratic gradients at 
the barycenter have been found. To solve these equations, iterations are made in order to find the approximation 
solutions. First, under the linear approximation, the linear gradient is obtained from the multiple-point meas-
urements. Then, the quadratic gradient is calculated on these bases. Finally, the first iteration is carried out and 
the quantity and its linear gradient at the barycenter are modified by the quadratic gradient obtained. The quad-
ratic gradient is then recalculated with the corrected values of the physical quantity and its linear gradient. The 
iterations are performed until the linear and quadratic gradients with satisfactory accuracies have been obtained.

Generally, the determination of the three components of the linear gradient of a physical quantity is dependent 
of the 3 3 volume matrix that reflects the configuration of the constellation (Chanteur, 1998; Harvey, 1998). 
This exploration indicates that the calculations of the six independent components of the quadratic gradient 
rely on the 6 6 symmetric characteristic matrix MN of the constellation. If the six eigenvalues of the char-
acteristic matrix MN are all nonzero, the six components of the quadratic gradient can be fully determined.

Using 10-point electric potential observations, the linear and quadratic gradients at the barycenter can be found, 
as well as the electric field and charge density. Using 10-point magnetic field measurements, the linear and 
quadratic magnetic gradients at the barycenter can be obtained, as well as the complete geometry of the MFLs.

Tests on ALQG were carried out using the cylindrical flux ropes, the dipole magnetic field, and the modeled 
geomagnetospheric field, and the reliability and accuracy of the algorithm were confirmed. In these tests, 
the spatial distribution of the geometrical parameters (radius of curvature and spiral angle) of the MFLs in 
the modeled geomagnetospheric field were also obtained, which were in good agreement with the analytic 
results. All three tests showed that, the calculations converged within 50 iterations. The obtained linear gra-
dient was of second-order accuracy, while the quadratic gradient was of first-order accuracy. The results of 
the test on the modeled geomagnetospheric field indicated that increasing the number of spacecraft in the 
constellation can enhance the accuracy of the calculated quadratic gradient and that its relative errors are 
inversely proportional to the number of spacecraft. However, the accuracy of the linear gradient obtained 
cannot be further improved by increasing the number of the spacecraft, and its relative errors are almost 
independent of the number of the spacecraft. Thus, the algorithm we have developed is a very effective, 
reliable and accurate one for jointly calculating both the linear and quadratic gradients of various physical 
quantities with ≥10-point constellation measurements.

This approach can be used to calculate the complete geometrical parameters of the magnetic field (e.g., the 
curvature and torsion of the MFLs) in the magnetosphere (e.g., with Tsyganenko models) numerically. This 
algorithm is also very meaningful for the design of future multiple spacecraft missions. For a constellation 
with 10 or more spacecraft, its characteristic matrix MN needs to have six nonzero eigenvalues in order to 
enable the complete determination of the quadratic gradients of the physical quantities. This algorithm will 
therefore find wide applications in the analysis of multiple-point observation data.

Data Availability Statement
No observation data have been used in this investigation. The codes for the algorithm are available at the web-
site: http://doi.org/10.5281/zenodo.4636552 or https://github.com/SpaceWalker162/quadraticGradient/
tree/master.
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